Content On This Page | ||
---|---|---|
Trigonometric Ratios of Some Specific Angles (0°, 30°, 45°, 60°, 90°) | Trigonometric Ratios of Complementary Angles |
Trigonometric Ratios of Special Angles and Complementary Angles
Trigonometric Ratios of Some Specific Angles (0°, 30°, 45°, 60°, 90°)
While trigonometric ratios can be calculated for any acute angle using a right-angled triangle, there are certain angles whose trigonometric ratios are frequently used and can be determined geometrically or through logical extension. These specific angles are $0^\circ$, $30^\circ$, $45^\circ$, $60^\circ$, and $90^\circ$. Knowing the values of trigonometric ratios for these angles is essential.
Derivation for $45^\circ$
To find the trigonometric ratios for $45^\circ$, we can consider a special type of right-angled triangle: an isosceles right-angled triangle. In such a triangle, one angle is $90^\circ$, and the other two angles are equal, each measuring $\frac{180^\circ - 90^\circ}{2} = 45^\circ$.
Consider a right-angled triangle ABC, where $\angle B = 90^\circ$ and $\angle A = \angle C = 45^\circ$.
Since it's an isosceles right-angled triangle with $\angle A = \angle C$, the sides opposite to these angles must be equal in length. So, AB = BC.
Let's assume the length of AB (and BC) is $a$ units, where $a > 0$.

Now, we find the length of the hypotenuse AC using the Pythagorean Theorem:
$ AC^2 = AB^2 + BC^2 $
Substitute the lengths:
$ AC^2 = a^2 + a^2 $
$ AC^2 = 2a^2 $
Taking the square root of both sides (and considering only the positive length):
$ AC = \sqrt{2a^2} = \sqrt{2} \times \sqrt{a^2} = \sqrt{2}a $
So, the sides of a $45^\circ - 45^\circ - 90^\circ$ triangle are in the ratio $a : a : a\sqrt{2}$, or $1 : 1 : \sqrt{2}$.
Now, let's find the trigonometric ratios for $\theta = 45^\circ$. We can use either $\angle A$ or $\angle C$. Let's use $\angle C$.
Opposite Side (O) to $\angle C$ = AB = $a$
Adjacent Side (A) to $\angle C$ = BC = $a$}
Hypotenuse (H) = AC = $a\sqrt{2}$
Using the definitions of trigonometric ratios:
$ \sin 45^\circ = \frac{\text{Opposite}}{\text{Hypotenuse}} = \frac{a}{a\sqrt{2}} = \frac{\cancel{a}}{\cancel{a}\sqrt{2}} = \frac{1}{\sqrt{2}} $
$ \cos 45^\circ = \frac{\text{Adjacent}}{\text{Hypotenuse}} = \frac{a}{a\sqrt{2}} = \frac{\cancel{a}}{\cancel{a}\sqrt{2}} = \frac{1}{\sqrt{2}} $
$ \tan 45^\circ = \frac{\text{Opposite}}{\text{Adjacent}} = \frac{a}{a} = \frac{\cancel{a}}{\cancel{a}} = 1 $
Now, let's find the reciprocal ratios:
$ \text{cosec} \, 45^\circ = \frac{1}{\sin 45^\circ} = \frac{1}{1/\sqrt{2}} = \sqrt{2} $
$ \sec 45^\circ = \frac{1}{\cos 45^\circ} = \frac{1}{1/\sqrt{2}} = \sqrt{2} $
$ \cot 45^\circ = \frac{1}{\tan 45^\circ} = \frac{1}{1} = 1 $
Derivation for $30^\circ$ and $60^\circ$
To find the trigonometric ratios for $30^\circ$ and $60^\circ$, we can consider an equilateral triangle. In an equilateral triangle, all sides are equal, and all angles are equal to $60^\circ$.
Consider an equilateral triangle ABC with side length $2a$, where $a > 0$. Thus, AB = BC = CA = $2a$, and $\angle A = \angle B = \angle C = 60^\circ$.
Draw an altitude (perpendicular) AD from vertex A to the side BC. In an equilateral triangle, the altitude also acts as a median and an angle bisector.

Therefore, AD is perpendicular to BC ($\angle ADB = 90^\circ$), D is the midpoint of BC (so BD = DC = $\frac{1}{2} \times 2a = a$), and AD bisects $\angle BAC$ (so $\angle BAD = \angle CAD = \frac{1}{2} \times 60^\circ = 30^\circ$).
Now consider the right-angled triangle ABD.

In $\triangle$ABD:
- $\angle B = 60^\circ$
- $\angle BAD = 30^\circ$
- $\angle ADB = 90^\circ$
- Hypotenuse AB = $2a$
- Side BD = $a$
We need to find the length of the side AD using the Pythagorean Theorem in $\triangle$ABD:
$ AB^2 = AD^2 + BD^2 $
Substitute the known lengths:
$ (2a)^2 = AD^2 + a^2 $
$ 4a^2 = AD^2 + a^2 $
$ AD^2 = 4a^2 - a^2 = 3a^2 $
Taking the square root (positive value):
$ AD = \sqrt{3a^2} = \sqrt{3} \times \sqrt{a^2} = \sqrt{3}a $
So, the sides of a $30^\circ - 60^\circ - 90^\circ$ triangle are in the ratio $a : \sqrt{3}a : 2a$, or $1 : \sqrt{3} : 2$ (corresponding to sides opposite $30^\circ$, $60^\circ$, and $90^\circ$ respectively).
Ratios for $60^\circ$ (using $\angle B$)
In $\triangle$ABD, with respect to $\angle B = 60^\circ$:
Opposite Side (O) to $\angle B$ = AD = $\sqrt{3}a$
Adjacent Side (A) to $\angle B$ = BD = $a$
Hypotenuse (H) = AB = $2a$
Using the definitions:
$ \sin 60^\circ = \frac{O}{H} = \frac{\sqrt{3}a}{2a} = \frac{\sqrt{3}\cancel{a}}{2\cancel{a}} = \frac{\sqrt{3}}{2} $
$ \cos 60^\circ = \frac{A}{H} = \frac{a}{2a} = \frac{\cancel{a}}{2\cancel{a}} = \frac{1}{2} $
$ \tan 60^\circ = \frac{O}{A} = \frac{\sqrt{3}a}{a} = \frac{\sqrt{3}\cancel{a}}{\cancel{a}} = \sqrt{3} $
Reciprocal ratios for $60^\circ$:
$ \text{cosec} \, 60^\circ = \frac{1}{\sin 60^\circ} = \frac{1}{\sqrt{3}/2} = \frac{2}{\sqrt{3}} $
$ \sec 60^\circ = \frac{1}{\cos 60^\circ} = \frac{1}{1/2} = 2 $
$ \cot 60^\circ = \frac{1}{\tan 60^\circ} = \frac{1}{\sqrt{3}} $
Ratios for $30^\circ$ (using $\angle BAD$)
In $\triangle$ABD, with respect to $\angle BAD = 30^\circ$:
Opposite Side (O) to $\angle BAD$ = BD = $a$
Adjacent Side (A) to $\angle BAD$ = AD = $\sqrt{3}a$
Hypotenuse (H) = AB = $2a$
Using the definitions:
$ \sin 30^\circ = \frac{O}{H} = \frac{a}{2a} = \frac{\cancel{a}}{2\cancel{a}} = \frac{1}{2} $
$ \cos 30^\circ = \frac{A}{H} = \frac{\sqrt{3}a}{2a} = \frac{\sqrt{3}\cancel{a}}{2\cancel{a}} = \frac{\sqrt{3}}{2} $
$ \tan 30^\circ = \frac{O}{A} = \frac{a}{\sqrt{3}a} = \frac{\cancel{a}}{\sqrt{3}\cancel{a}} = \frac{1}{\sqrt{3}} $
Reciprocal ratios for $30^\circ$:
$ \text{cosec} \, 30^\circ = \frac{1}{\sin 30^\circ} = \frac{1}{1/2} = 2 $
$ \sec 30^\circ = \frac{1}{\cos 30^\circ} = \frac{1}{\sqrt{3}/2} = \frac{2}{\sqrt{3}} $
$ \cot 30^\circ = \frac{1}{\tan 30^\circ} = \frac{1}{1/\sqrt{3}} = \sqrt{3} $
Values for $0^\circ$ and $90^\circ$
Defining trigonometric ratios for $0^\circ$ and $90^\circ$ requires extending the concept beyond just acute angles in a right triangle. This can be done using the concept of a unit circle, where an angle is formed by rotating the terminal side from the positive x-axis, and the trigonometric ratios are defined based on the coordinates of the point where the terminal side intersects the unit circle.
Consider a point P(x, y) on the unit circle (a circle with radius 1 centered at the origin). If the angle formed by the positive x-axis and the ray OP is $\theta$, then the coordinates of P are $(\cos \theta, \sin \theta)$.
For $\theta = 0^\circ$, the terminal side lies along the positive x-axis. The point P is (1, 0). Thus:
$ \cos 0^\circ = x\text{-coordinate of P} = 1 $
$ \sin 0^\circ = y\text{-coordinate of P} = 0 $
Using quotient and reciprocal identities:
$ \tan 0^\circ = \frac{\sin 0^\circ}{\cos 0^\circ} = \frac{0}{1} = 0 $
$ \cot 0^\circ = \frac{1}{\tan 0^\circ} = \frac{1}{0} = \text{Undefined} $
$ \sec 0^\circ = \frac{1}{\cos 0^\circ} = \frac{1}{1} = 1 $
$ \text{cosec} \, 0^\circ = \frac{1}{\sin 0^\circ} = \frac{1}{0} = \text{Undefined} $
For $\theta = 90^\circ$, the terminal side lies along the positive y-axis. The point P is (0, 1). Thus:
$ \cos 90^\circ = x\text{-coordinate of P} = 0 $
$ \sin 90^\circ = y\text{-coordinate of P} = 1 $
Using quotient and reciprocal identities:
$ \tan 90^\circ = \frac{\sin 90^\circ}{\cos 90^\circ} = \frac{1}{0} = \text{Undefined} $
$ \cot 90^\circ = \frac{1}{\tan 90^\circ} = \frac{1}{\text{Undefined}} = 0 $ (Alternatively, $\cot 90^\circ = \frac{\cos 90^\circ}{\sin 90^\circ} = \frac{0}{1} = 0$)
$ \sec 90^\circ = \frac{1}{\cos 90^\circ} = \frac{1}{0} = \text{Undefined} $
$ \text{cosec} \, 90^\circ = \frac{1}{\sin 90^\circ} = \frac{1}{1} = 1 $
(Note: For $\tan 90^\circ$ and $\sec 90^\circ$, the denominator is zero, hence they are undefined. For $\cot 0^\circ$ and $\text{cosec} \, 0^\circ$, the denominator is zero, hence they are undefined.)
Table of Trigonometric Ratios for Specific Angles
The values derived above are summarised in the following table, which is crucial to remember for solving many problems.
Angle ($\theta$) | $0^\circ$ | $30^\circ$ | $45^\circ$ | $60^\circ$ | $90^\circ$ |
---|---|---|---|---|---|
$\sin \theta$ | $0$ | $\frac{1}{2}$ | $\frac{1}{\sqrt{2}}$ | $\frac{\sqrt{3}}{2}$ | $1$ |
$\cos \theta$ | $1$ | $\frac{\sqrt{3}}{2}$ | $\frac{1}{\sqrt{2}}$ | $\frac{1}{2}$ | $0$ |
$\tan \theta$ | $0$ | $\frac{1}{\sqrt{3}}$ | $1$ | $\sqrt{3}$ | Undefined |
$\text{cosec} \, \theta$ | Undefined | $2$ | $\sqrt{2}$ | $\frac{2}{\sqrt{3}}$ | $1$ |
$\sec \theta$ | $1$ | $\frac{2}{\sqrt{3}}$ | $\sqrt{2}$ | $2$ | Undefined |
$\cot \theta$ | Undefined | $\sqrt{3}$ | $1$ | $\frac{1}{\sqrt{3}}$ | $0$ |
Tip for remembering the table:
For $\sin \theta$ values (0°, 30°, 45°, 60°, 90°): Write $\frac{\sqrt{0}}{2}, \frac{\sqrt{1}}{2}, \frac{\sqrt{2}}{2}, \frac{\sqrt{3}}{2}, \frac{\sqrt{4}}{2}$. Simplify these to get $0, \frac{1}{2}, \frac{1}{\sqrt{2}}, \frac{\sqrt{3}}{2}, 1$.
For $\cos \theta$ values: Write the $\sin \theta$ values in reverse order.
For $\tan \theta$: Use the identity $\tan \theta = \frac{\sin \theta}{\cos \theta}$.
For $\text{cosec} \, \theta, \sec \theta, \cot \theta$: Take the reciprocals of $\sin \theta, \cos \theta, \tan \theta$ respectively.
Examples
Example 1. Evaluate $2 \tan^2 45^\circ + \cos^2 30^\circ - \sin^2 60^\circ$.
Answer:
We need to find the values of the trigonometric ratios for the given angles from the table:
$ \tan 45^\circ = 1 $
$ \cos 30^\circ = \frac{\sqrt{3}}{2} $
$ \sin 60^\circ = \frac{\sqrt{3}}{2} $
Now, substitute these values into the given expression:
$ 2 \tan^2 45^\circ + \cos^2 30^\circ - \sin^2 60^\circ = 2 (\tan 45^\circ)^2 + (\cos 30^\circ)^2 - (\sin 60^\circ)^2 $
$ = 2 (1)^2 + \left(\frac{\sqrt{3}}{2}\right)^2 - \left(\frac{\sqrt{3}}{2}\right)^2 $
$ = 2(1) + \frac{(\sqrt{3})^2}{2^2} - \frac{(\sqrt{3})^2}{2^2} $
$ = 2 \times 1 + \frac{3}{4} - \frac{3}{4} $
$ = 2 + 0 $
$ = 2 $
Therefore, the value of the expression is $2$.
Example 2. Evaluate $\frac{\sin 30^\circ + \tan 45^\circ - \text{cosec} \, 60^\circ}{\sec 30^\circ + \cos 60^\circ + \cot 45^\circ}$.
Answer:
We need the values of the trigonometric ratios from the table:
$ \sin 30^\circ = \frac{1}{2} $
$ \tan 45^\circ = 1 $
$ \text{cosec} \, 60^\circ = \frac{2}{\sqrt{3}} $
$ \sec 30^\circ = \frac{2}{\sqrt{3}} $
$ \cos 60^\circ = \frac{1}{2} $
$ \cot 45^\circ = 1 $
Substitute these values into the expression:
$ \frac{\sin 30^\circ + \tan 45^\circ - \text{cosec} \, 60^\circ}{\sec 30^\circ + \cos 60^\circ + \cot 45^\circ} = \frac{\frac{1}{2} + 1 - \frac{2}{\sqrt{3}}}{\frac{2}{\sqrt{3}} + \frac{1}{2} + 1} $
Combine the terms in the numerator and the denominator separately. Find a common denominator (LCM of 2 and $\sqrt{3}$ is $2\sqrt{3}$):
Numerator: $ \frac{1}{2} + 1 - \frac{2}{\sqrt{3}} = \frac{\sqrt{3}}{2\sqrt{3}} + \frac{2\sqrt{3}}{2\sqrt{3}} - \frac{2 \times 2}{2\sqrt{3}} = \frac{\sqrt{3} + 2\sqrt{3} - 4}{2\sqrt{3}} = \frac{3\sqrt{3} - 4}{2\sqrt{3}} $
Denominator: $ \frac{2}{\sqrt{3}} + \frac{1}{2} + 1 = \frac{2 \times 2}{2\sqrt{3}} + \frac{\sqrt{3}}{2\sqrt{3}} + \frac{2\sqrt{3}}{2\sqrt{3}} = \frac{4 + \sqrt{3} + 2\sqrt{3}}{2\sqrt{3}} = \frac{4 + 3\sqrt{3}}{2\sqrt{3}} $
Now divide the numerator by the denominator:
$ \text{Expression} = \frac{\frac{3\sqrt{3} - 4}{2\sqrt{3}}}{\frac{3\sqrt{3} + 4}{2\sqrt{3}}} $
Multiply the numerator by the reciprocal of the denominator:
$ = \frac{3\sqrt{3} - 4}{\cancel{2\sqrt{3}}} \times \frac{\cancel{2\sqrt{3}}}{3\sqrt{3} + 4} $
$ = \frac{3\sqrt{3} - 4}{3\sqrt{3} + 4} $
To rationalise the denominator, multiply the numerator and denominator by the conjugate of the denominator, which is $3\sqrt{3} - 4$:
$ = \left(\frac{3\sqrt{3} - 4}{3\sqrt{3} + 4}\right) \times \left(\frac{3\sqrt{3} - 4}{3\sqrt{3} - 4}\right) $
Numerator: $ (3\sqrt{3} - 4)^2 = (3\sqrt{3})^2 - 2(3\sqrt{3})(4) + 4^2 = (9 \times 3) - 24\sqrt{3} + 16 = 27 - 24\sqrt{3} + 16 = 43 - 24\sqrt{3} $
Denominator: $ (3\sqrt{3} + 4)(3\sqrt{3} - 4) = (3\sqrt{3})^2 - 4^2 = (9 \times 3) - 16 = 27 - 16 = 11 $
So, the simplified expression is:
$ = \frac{43 - 24\sqrt{3}}{11} $
This can also be written as $ \frac{43}{11} - \frac{24\sqrt{3}}{11} $.
Trigonometric Ratios of Complementary Angles
Two angles are called complementary if their sum is equal to $90^\circ$. In a right-angled triangle, the sum of all three angles is $180^\circ$. Since one angle is $90^\circ$, the sum of the other two acute angles must be $180^\circ - 90^\circ = 90^\circ$. Therefore, the two acute angles in a right-angled triangle are always complementary to each other.
Consider a right-angled triangle ABC, which is right-angled at B.

In $\triangle$ABC, $\angle A + \angle B + \angle C = 180^\circ$.
$\angle A + 90^\circ + \angle C = 180^\circ$
[Since $\angle B = 90^\circ$]
$ \angle A + \angle C = 180^\circ - 90^\circ $
$\angle A + \angle C = 90^\circ$
[A and C are complementary]
This means that $\angle C = 90^\circ - \angle A$, and $\angle A = 90^\circ - \angle C$.
Deriving the Relationships
Let's derive the relationships between the trigonometric ratios of complementary angles. Consider the right-angled triangle ABC, right-angled at B.

Trigonometric Ratios for Angle C:
With respect to angle C:
Opposite Side = AB
Adjacent Side = BC
Hypotenuse = AC
$ \sin C = \frac{\text{Opposite}}{\text{Hypotenuse}} = \frac{AB}{AC} $
$ \cos C = \frac{\text{Adjacent}}{\text{Hypotenuse}} = \frac{BC}{AC} $
$ \tan C = \frac{\text{Opposite}}{\text{Adjacent}} = \frac{AB}{BC} $
$ \text{cosec} \, C = \frac{\text{Hypotenuse}}{\text{Opposite}} = \frac{AC}{AB} $
$ \sec C = \frac{\text{Hypotenuse}}{\text{Adjacent}} = \frac{AC}{BC} $
$ \cot C = \frac{\text{Adjacent}}{\text{Opposite}} = \frac{BC}{AB} $
Trigonometric Ratios for Angle A:
With respect to angle A:
Opposite Side = BC
Adjacent Side = AB
Hypotenuse = AC
Angle A is complementary to angle C, so we can write $\angle A = 90^\circ - \angle C$. Let's express the ratios for angle A:
$ \sin A = \sin (90^\circ - C) = \frac{\text{Opposite}}{\text{Hypotenuse}} = \frac{BC}{AC} $
$ \cos A = \cos (90^\circ - C) = \frac{\text{Adjacent}}{\text{Hypotenuse}} = \frac{AB}{AC} $
$ \tan A = \tan (90^\circ - C) = \frac{\text{Opposite}}{\text{Adjacent}} = \frac{BC}{AB} $
$ \text{cosec} \, A = \text{cosec} \, (90^\circ - C) = \frac{\text{Hypotenuse}}{\text{Opposite}} = \frac{AC}{BC} $
$ \sec A = \sec (90^\circ - C) = \frac{\text{Hypotenuse}}{\text{Adjacent}} = \frac{AC}{AB} $
$ \cot A = \cot (90^\circ - C) = \frac{\text{Adjacent}}{\text{Opposite}} = \frac{AB}{BC} $
Comparing the Ratios:
Now, let's compare the ratios for angle C and angle A ($90^\circ - C$):
We see that $\sin (90^\circ - C) = \frac{BC}{AC}$ and $\cos C = \frac{BC}{AC}$. Therefore, $\mathbf{\sin (90^\circ - C) = \cos C}$.
We see that $\cos (90^\circ - C) = \frac{AB}{AC}$ and $\sin C = \frac{AB}{AC}$. Therefore, $\mathbf{\cos (90^\circ - C) = \sin C}$.
We see that $\tan (90^\circ - C) = \frac{BC}{AB}$ and $\cot C = \frac{BC}{AB}$. Therefore, $\mathbf{\tan (90^\circ - C) = \cot C}$.
We see that $\cot (90^\circ - C) = \frac{AB}{BC}$ and $\tan C = \frac{AB}{BC}$. Therefore, $\mathbf{\cot (90^\circ - C) = \tan C}$.
We see that $\sec (90^\circ - C) = \frac{AC}{AB}$ and $\text{cosec} \, C = \frac{AC}{AB}$. Therefore, $\mathbf{\sec (90^\circ - C) = \text{cosec} \, C}$.
We see that $\text{cosec} \, (90^\circ - C) = \frac{AC}{BC}$ and $\sec C = \frac{AC}{BC}$. Therefore, $\mathbf{\text{cosec} \, (90^\circ - C) = \sec C}$.
Complementary Angle Identities
Replacing the acute angle C with a general acute angle $\theta$ (where $0^\circ < \theta < 90^\circ$), we get the following fundamental identities for trigonometric ratios of complementary angles:
$\mathbf{\sin (90^\circ - \theta) = \cos \theta}$
$\mathbf{\cos (90^\circ - \theta) = \sin \theta}$
$\mathbf{\tan (90^\circ - \theta) = \cot \theta}$
$\mathbf{\cot (90^\circ - \theta) = \tan \theta}$
$\mathbf{\sec (90^\circ - \theta) = \text{cosec} \, \theta}$
$\mathbf{\text{cosec} \, (90^\circ - \theta) = \sec \theta}$
These identities are particularly useful when dealing with angles that are complementary to the standard specific angles ($0^\circ, 30^\circ, 45^\circ, 60^\circ, 90^\circ$). For example, $72^\circ$ is the complement of $18^\circ$, $50^\circ$ is the complement of $40^\circ$, etc.
While derived using acute angles, these identities hold true for all angles where the respective trigonometric ratios are defined.
Examples
Example 1. Evaluate $\frac{\sin 18^\circ}{\cos 72^\circ}$.
Answer:
We observe that the angles $18^\circ$ and $72^\circ$ are complementary, since $18^\circ + 72^\circ = 90^\circ$.
We can use the complementary angle identity $\cos (90^\circ - \theta) = \sin \theta$ or $\sin (90^\circ - \theta) = \cos \theta$.
Method 1: Expressing $\cos 72^\circ$ in terms of sine
We know that $72^\circ = 90^\circ - 18^\circ$.
Using the identity $\cos (90^\circ - \theta) = \sin \theta$, with $\theta = 18^\circ$:
$ \cos 72^\circ = \cos (90^\circ - 18^\circ) = \sin 18^\circ $
Now, substitute this into the given expression:
$ \frac{\sin 18^\circ}{\cos 72^\circ} = \frac{\sin 18^\circ}{\sin 18^\circ} $
Since $\sin 18^\circ \ne 0$, we can cancel the terms:
$ = 1 $
Method 2: Expressing $\sin 18^\circ$ in terms of cosine
We know that $18^\circ = 90^\circ - 72^\circ$.
Using the identity $\sin (90^\circ - \theta) = \cos \theta$, with $\theta = 72^\circ$:
$ \sin 18^\circ = \sin (90^\circ - 72^\circ) = \cos 72^\circ $
Now, substitute this into the given expression:
$ \frac{\sin 18^\circ}{\cos 72^\circ} = \frac{\cos 72^\circ}{\cos 72^\circ} $
Since $\cos 72^\circ \ne 0$, we can cancel the terms:
$ = 1 $
In both methods, the value of the expression is 1.
Example 2. If $\tan 2A = \cot (A - 18^\circ)$, where $2A$ is an acute angle, find the value of A.
Answer:
Given:
$\tan 2A = \cot (A - 18^\circ)$
$2A$ is an acute angle, which means $0^\circ < 2A < 90^\circ$.
To Find:
The value of A.
Solution:
We use the complementary angle identity that relates tangent and cotangent: $ \cot \theta = \tan (90^\circ - \theta) $.
We can rewrite the right side of the given equation using this identity. Let $\theta = A - 18^\circ$.
$ \cot (A - 18^\circ) = \tan [90^\circ - (A - 18^\circ)] $
$ \cot (A - 18^\circ) = \tan (90^\circ - A + 18^\circ) $
$\cot (A - 18^\circ) = \tan (108^\circ - A)$
Now, substitute this back into the original equation:
$\tan 2A = \tan (108^\circ - A)$
If $\tan X = \tan Y$, then generally $X = n \times 180^\circ + Y$ for integer $n$. However, in the context of basic trigonometry involving acute angles, if $\tan X = \tan Y$ and both $X$ and $Y$ are angles between $0^\circ$ and $90^\circ$, then $X=Y$. Here, $2A$ is acute. For $\cot(A - 18^\circ)$ to be equal to $\tan(2A)$, $A - 18^\circ$ must be the complement of $2A$. This implies that $2A$ and $A - 18^\circ$ are angles within a context where the complementary identities apply, or that their sum is $90^\circ$ (or $90^\circ + 180^\circ n$, etc.).
Given that $2A$ is acute, the simplest case is that $2A$ and $A - 18^\circ$ are angles whose complementary relationship is being used directly. This means their sum is $90^\circ$ if both were considered positive acute angles. However, using the identity $\cot \theta = \tan (90^\circ - \theta)$ directly implies that $2A$ and $90^\circ - (A - 18^\circ)$ must be equal (modulo $180^\circ$). Since $2A$ is acute, $108^\circ - A$ should ideally also result in an acute angle value for the tangent to be related this simply, although the identity works more broadly.
Let's assume the intended relationship based on the identity is simply equating the arguments of the tangent function, given the context of these types of problems:
$2A = 108^\circ - A$
Add A to both sides:
$ 2A + A = 108^\circ $
$3A = 108^\circ$
... (i)
Divide by 3:
$ A = \frac{108^\circ}{3} $
$ A = 36^\circ $
Check:
If $A = 36^\circ$, then $2A = 2 \times 36^\circ = 72^\circ$. This is an acute angle ($0^\circ < 72^\circ < 90^\circ$), as required by the problem statement.
Also, $A - 18^\circ = 36^\circ - 18^\circ = 18^\circ$.
The original equation is $\tan 2A = \cot (A - 18^\circ)$, which becomes $\tan 72^\circ = \cot 18^\circ$.
Using the complementary angle identity $\cot \theta = \tan (90^\circ - \theta)$, we have $\cot 18^\circ = \tan (90^\circ - 18^\circ) = \tan 72^\circ$.
So, $\tan 72^\circ = \tan 72^\circ$, which is true.
Therefore, the value of A is $36^\circ$.